Boosted Regression Method based on Rejection Limits for Large-Scale Data
نویسندگان
چکیده
منابع مشابه
An Efficient Data Replication Strategy in Large-Scale Data Grid Environments Based on Availability and Popularity
The data grid technology, which uses the scale of the Internet to solve storage limitation for the huge amount of data, has become one of the hot research topics. Recently, data replication strategies have been widely employed in distributed environment to copy frequently accessed data in suitable sites. The primary purposes are shortening distance of file transmission and achieving files from ...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملTrust Region Newton Method for Large-Scale Logistic Regression
Large-scale logistic regression arises in many applications such as document classification and natural language processing. In this paper, we apply a trust region Newton method to maximize the log-likelihood of the logistic regression model. The proposed method uses only approximate Newton steps in the beginning, but achieves fast convergence in the end. Experiments show that it is faster than...
متن کاملA Method for Large-Scale l1-Regularized Logistic Regression
Logistic regression with l1 regularization has been proposed as a promising method for feature selection in classification problems. Several specialized solution methods have been proposed for l1-regularized logistic regression problems (LRPs). However, existing methods do not scale well to large problems that arise in many practical settings. In this paper we describe an efficient interior-poi...
متن کاملA Method for Large-Scale 1-Regularized Logistic Regression
Logistic regression with 1 regularization has been proposed as a promising method for feature selection in classification problems. Several specialized solution methods have been proposed for 1-regularized logistic regression problems (LRPs). However, existing methods do not scale well to large problems that arise in many practical settings. In this paper we describe an efficient interior-point...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Industrial Engineers
سال: 2016
ISSN: 1225-0988
DOI: 10.7232/jkiie.2016.42.4.263